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In previous papers the axial stiffness of crystalline native cellulose has been calculated for 
two proposed configurations of the cellulose chains within the elementary fibrils: an 
extended chain configuration, and a configuration in which the chains are folded to form a 
ribbon which in turn is helically wound into a rather open, spring-like structure. In the 
present paper two additional folded-chain configurations are treated: a more tightly wound 
helical configuration in which axial secondary bonds are formed between adjacent turns of 
the helix; and a configuration in which the chains are folded rather infrequently and remain 
in a fully-dense close-packed arrangement. It is shown that this last configuration is 
mechanically equivalent to the extended chain configuration so far as axial stiffness is 
concerned, and that either helical configuration has a substantially lower axial stiffness 
than that of the extended chain. 

1. Introduct ion 
In previous papers [1-4] elastic constants for 
crystalline native cellulose have been calculated, 
via consideration of the interatomic bending and 
stretching force constants applicable to the solid 
state, for one major extended-chain model and 
one widely-discussed folded-chain model. These 
models are shown schematically in figs. la and b 
respectively. A third major type of  model, 
exemplified by the proposal of  Marx-Figini and 
Schulz, [5] appears in fig. lc. It may be described 
as a fully-dense folded-chain solid state model. 
Its mechanical behaviour will be investigated in 
this paper, as well as the case closely related to it 
shown in fig. 1 d, which is a folded-chain helical 
coil wound so tightly that the folds in adjacent 
turns of the helix come into suNciently close 
proximity to permit hydrogen bonding between 
turns. A structure such as that shown in fig. ld  
thus becomes a tube. 

The extended-chain configuration used in our 
.earlier work [1, 4] was the classical crystallo- 
graphic model of Meyer and Misch [6] as 
modified by Frey-Wyssling [7]. In this model the 
cellulose chains are aligned in the [010] 

crystallographic direction (b-axis). Interchain 
hydrogen bonds seem to provide the main 
mechanism for stabilising the crystal against 
relative displacement of the chains, since the 
possible stability contribution of van der Waals 
forces has not been quantitatively assessed. It is 
assumed that there are no primary cross-linking 
bonds joining adjacent cellulose chains. 

In the folded-chain configuration considered 
previously [2, 3], a single chain molecule is 
folded repeatedly forming a ribbon-like band 
that is twisted into a helical configuration. This 
is the model of Manley [8]. The study of this 
folded-chain model indicated that it is grossly 
incompatible with the observed mechanical 
properties of cellulosic fibres, whereas reasonable 
values for the elastic stiffness of the extended- 
chain model were obtained when the contribu- 
tions of interchain hydrogen bonds to axial 
modulus of elasticity were accounted for [4]. 

In references [2] and [3], we considered the 
case as illustrated in Manley's original paper, 
wherein the spacing between adjacent turns of 
the coil is too large to permit hydrogen bonds to 
form between turns, but in which there are 
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Figure I Proposed models for crystalline native cellu- 
lose. (a) Extended-chain. (b) Folded-chain model of 
Manley.(c) Folded-chain model of Marx-Figini and Schulz. 
(d) Tightly-coiled modification of Manley model. 
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hydrogen bonds between adjacent folded-chain 
segments within the ribbon. The tubular con- 
figuration of fig. l d applies to a model that 
would be helical except for its failure to meet the 
criterion of no bonding between adjacent turns 
of the coil, but which does retain the 35 A 
diameter and other dimensional features of the 
original Manley model. 

Regardless of the internal polymer configura- 
tion, it is becoming increasingly accepted that 
the 35 A. diameter for elementary fibrils (proto- 
fibrils) proposed by Miihlethaler [9] is a dimen- 
sion that reasonably represents the smallest unit 
of fully coherent cellulose chain aggregation in 
plant cell walls. According to this conception, 
the larger microfibril dimensions often observed 
(in electron micrographs, etc.) are really multiples 
of 35 A_ and are the result of fasciation of the 
elementary fibrils. 

Thepresentpaper considers the cases illustrated 
in figs. lc and d, and shows that generally the 
modulus of elasticity in the direction of the fibril 
axis will be less than that of the extended-chain 
structure analysed earlier [1, 4] by only a small 
amount in the former case, but by a substantial 
factor in the latter. In this paper and previous 
works, several basic structural configurations 
have been considered. However, various refine- 
ments, such as the intrachain hydrogen bonding 
pattern proposed by Liang and Marchessault 
[10] remain to be evaluated more thoroughly. 

2. Ana lys is  
Consider first the case of a helically wound 
ribbon having adjacent ribbon edges sufficiently 
close for hydrogen bonding (or even some form 
of primary bonding) as shown in fig. ld. 
Structurally this arrangement is equivalent to a 
tube. Assuming that the lateral restraint offered 
to axial extension- the Poisson effect- in this 
configuration does not differ greatly from that in 
the extended-chain configuration, we can calcu- 
late the tubular stiffness by comparison to the 
extended form. 

A prismatic element from the extended-chain 
configuration is shown in fig. 2. It has an axial 
length L and contains a single chain having an 
associated cross-sectional area A0 equal to one- 
half the area of the unit cell of cellulose I. The 
stiffness is defined as the ratio of load P to 
extension 3. Hooke's law for elastic extension of 
a prismatic element gives: 

I,:o = pla = A o E d L .  O )  
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,Figure 2 Prismatic element from an extended-chain seg- 
ment of crystalline cellulose 1, 

Here K 0 is the stiffness and E0 is the elastic 
modulus in the chain direction for the extended- 
chain configuration. 

Equation 1 shows that the stiffness, or 
"cumulative spring force constant" [11 ], for any 
segment of the tubular structure containing one 
or more primary or secondary bonds will be 
inversely proportional to the length of the seg- 
ment. A long chain segment will have a smaller 
K value than that of a shorter segment containing 
identical repeat units and bonding. 

Next consider an element from the ribbon of 
the tightly wound helical configuration as in fig. 
3. The figure shows the ends of the element 
perpendicular to the protofibril axis, although 
they should actually be inclined at an angle 
corresponding to the helical pitch. However, the 
subsequent analysis makes it clear that so far as 
stiffness is concerned the helical tube is mechanic- 
ally equivalent to a tube composed of alternating 
rings of cellulose chains (or folded-chain 
segments aligned axially, and secondary bonds. 

L KI 

/ \ 
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Figure 3 Element of a tightly-coiled, tubular folded-chain 
cellulose structure. 

Denote by m the number of axially oriented 
chain segments in the element of fig. 3 and by n 
the number of secondary bonds in the element 

that have formed to join the chain segments in 
this element to the next. Let the sum of chain 
length L and secondary bond length I be equal to 
H, the linear spacing of the layers of secondary 
bonds so that the element is a characteristic 
repeat unit along the protofibril axis. Since the 
upper portion of this element depends for its 
stiffness on the axial chains, it must have a stiff- 
ness K1 that is m times the stiffness of a single 
chain of the same length, given by equation 1. 

K1 = m K o ~- m A o E o / L .  (2) 

Similarly, the lower portion of the element has a 
stiffness K~ that is n times the stiffness, k, of a 
secondary bond. 

K2 = n k .  (3) 

Here the bond stiffness k is the value appropriate 
for combined stretching and bending of the 
hydrogen bonds linking adjacent chain folds, 
resolved in the direction of the protofibril axis. 
Since no detailed configurations have yet been 
suggested for such bonds we assume for simplicity 
in subsequent calculations that the bonds are 
aligned for direct axial stretching only. This is the 
stiffest possible configuration. No length term 
appears in equation 3 as it does in 1 since the 
stiffness k already implies the characteristic 
length of the corresponding hydrogen bond. 

The two portions of this element acting in 
series have a combined stiffness K obtained 
from: 

1/K = 1/KI + 1/K2. (4) 
Thus the overall stiffness of the element is: 

X = Xl / [1  + (/(1//s (5) 

The value K will be determined primarily by the 
lower of the two values,/(1,/(2. Even though the 
primary bonds in the chain segment are indi- 
vidually stiffer than the intercoil hydrogen bonds 
/(1 will be less than K~ because of the greater 
length of primary chain (see equation 1). 

In order to compare tubular and extended- 
chain configurations, equation 5 can best be 
interpreted in terms of aggregate packing 
densities. Each protofibril has a certain gross 
cross-sectional area and is threaded by a certain 
number of chains. Therefore, a gross area per 
chain, A, can be determined and the correspond- 
ing cross-sectional area supported by the element 
of fig. 3 is m A .  The length of this element is H 
and thus by applying the formula of equation 1 
relating the stiffness of a prismatic element to its 

1005 



P. P. GILLIS ,  R. E. M A R K ,  R-C.  T A N G  

dimensions and elastic modulus, to equation 5 an 
elastic modulus, E, can be calculated for the 
tubular structure with the assistance of equation 
3. 

mAE rnAoEo ( mAoEo/L'~ . 
H -- L , 1 + ~ j (6) 

Thus the modulus of the tubular structure is: 

E = Eo(Ao/A) (H/L)/[1 + (m/n) (AoEo/L/k]. (7) 

Equation 7 expresses the modulus of the tubular 
structure in terms of that for an extended-chain 
structure, the ratio of chain densities in the two 
structures, the axial fraction occupied by chains 
as opposed to secondary bonds, and a factor 
involving the stiffness ratio of a characteristic 
length of cellulose chain to the interconnecting 
secondary bond. 

Consider next the densely packed prismatic 
elementary fibril shown in fig. lc. Analysis of an 
axial element from such a structure proceeds 
formally in exactly the same manner as for the 
element of fig. 3. Hence equation 7 also gives the 
axial modulus for this configuration keeping in 
mind that the appropriate geometrical para- 
meters will be different in the two cases (figs. lc 
and d). 

:3. C a l c u l a t i o n s  
Manley's elementary fibril (protofibril) is 35 A in 
diameter, but the constraints imposed by the 
coiling of a folded-chain ribbon within this 
dimension preclude filling of some lattice posi- 
tions (see figs. 4 and 5). This effect decreases the 
packing density of chains, i.e. increases the cross- 
sectional area per chain A. If  one takes the 
inside diameter of the helical ribbon as 19 A the 
value forAo/A becomes approximately 1 - (19/35) 2 
= 0.7 for this model. With H and L set at 40 A 
and 37 A respectively, the second ratio in 
equation 7 has the value 1.08 and it remains only 
to evaluate the denominator. 

We assume that at each fold of the cellulose 
chain, one hydrogen bond forms, bridging the 
inter-ribbon gap so that the ratio of chains to 
hydrogen bonds, m/n, is 2. Then taking A 0 = 
32.5 • 10 -1G cm 2 for the Meyer and Misch 
extended-chain configuration and E0 = 32 • 1011 
dynes/cm 2, the maximum value computed by 
Gillis [4], we obtain Ko = AoEo/L - 3 • 10 ~ 
dynes/cm for the 37 A segment. This value is 
typical of the stretching force constant for a 
hydrogen bond. Thus if (AoEo/L)/k is taken as 
unity, the effective modulus of the bridged 
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Figure 4 Configuration of the folded cellulose chain mole- 
cule within the helically wound ribbon that forms the 
protofibril according to the concept of Manley. Note that 
some lattice posit ions are vacant if the chains are fitted 
to the monoclinic array generally accepted for cellulose. 
(Reprinted from [3] with permission.) 

35~k - 

Figure 5 Cross-section of the helix formed from the folding 
and twisting of molecular cellulose according to the 
scheme shown in fig. lb.  Chain segments such as illus- 
trated in fig. 4 would pass through positions shown by 
A and B, with chains absent elsewhere. Distortion of 
the monoclinic arrangement is introduced by the cons- 
traint of the 35 ~, protofibril diameter. (Reprinted from [3] 
with permission.) 

helical configuration is E = Eo (0.7) (1.08)/3 = 
0.25E 0. Substitution of the calculated Eo values 
yields solutions for E that are always lower than 
experimental determinations of natural cellulosic 
fibres [12, 13 ], thus violating the rule of mixtures 
[31. 

On the other hand, for the densely packed 
model of Marx-Figini and Schulz, the fold 
length suggested by these authors is 800 A. In 
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this case H/L  and Ao/A are both virtually unity 
but here AoEo/L = 0.13 • 10 't dynes/cm. If  one 
takes k = 3 • 104 dynes/cm and m/n = 2, as in 
the previous case, the effective modulus given by 
equation 7 is E ~- Eo/1.09 = 0.92Eo. 

,4. Conclusion 
Examination of the theoretical elastic properties 
of  native cellulose has continued in this study of 
two more suggested configurations. The Manley 
model for native cellulose would violate the 
physical "rule of mixtures" even if the gaps 
between adjacent helical wraps were bridged by a 
reasonable number of hydrogen bonds. This 
effect is due in part to a lower net Facking density 
of  chains in the hollow protofibril, but mainly it 
is due to the large fraction of hydrogen bonds 
that would be essentially in series with the cellu- 
lose chains if the secondary bonds occurred 
approximately every 40 A. 

The Marx-Figini and Schulz densely-packed 
folded-chain model is mechanically indistinguish- 
able from an extended-chain model since 
relatively few in-series hydrogen bonds occur at a 
spacing of 800 A. The methods of mechanics 
alone are not sufficient, therefore, to accept or 
reject this model. However, the chemical 
evidence provided by Muggli [14] to show that 
determinations of molecular weight of carban- 
ilated native (ramie) cellulose are consistent only 
with an extended-chain configuration, seems to 
have resolved the question by another means. 
High-resolution electron microscopy should 
provide us with a final answer on the best 
conformation model, perhaps in the near future. 
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